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The three-dimensional, parabolized form of the coupled equations of motion and 
energy are solved to study the development of mixed-convection heat transfer in the 
entrance region of horizontal square ducts. The specific problem considered here is 
that of axially uniform heat flux and peripherally uniform temperature with parabolic 
inlet profile and uniform inlet temperature in a square cross-section. Previous studies 
have been confined mostly to two-dimensional flows in the fully developed region. 
Recent two-dimensional calculations have indicated the existence of multiple steady- 
state solutions in the fully developed region with two- and four-cell flow structure. 
Present three-dimensional calculations, carried over the whole entrance length and the 
full cross-section, indicate the evolutionary path that lead to such two-dimensional 
flows. Furthermore they shed new light on the nature of flows in regions where all 
known two-dimensional solutions become unstable in some manner. For low Grashof 
numbers and P r  = 0.73 the secondary velocities develop into an axially invariant 
state with two counter-rotating vortices. For Grashof numbers above 2.2 x lo5 the 
inlet profiles evolve into a state with a four-cell secondary flow structure. As in 
a related problem of flow in a curved channel (Winters 1987; Bara et al. 1992), 
the two-dimensional, four-cell solutions are found to be unstable to asymmetric 
perturbations. Such perturbations trigger a new, streamwise-periodic mode which is 
sustained over long lengths in the flow direction. For Grashof numbers above 5.6 x lo5 
axially invariant two-cell solutions reappear. Some of the three-dimensional solutions 
corresponding to the streamwise periodic mode lack the reflective symmetry about 
the vertical centreline and hence these flows occur with multiplicity of two. 

1. Introduction 
Fully developed, two-dimensional mixed-convection heat transfer in horizontal 

ducts of rectangular and circular cross-sections has been studied quite extensively 
since the early work of Morton (1959). Hence the problem has come to be known as 
the Morton problem. The extensive literature is due, in part, to the importance of this 
mechanism in heat exchangers. In addition it serves as a model problem of an open 
channel flow to study the physics of flow transitions. The nonlinear coupling between 
the momentum and energy equations results in a complex bifurcation structure of the 
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two-dimensional solutions. Most of the early works did not, of course, take account 
of or explore these features. 

Experimental results are presented by Bergles & Simonds (1971) for the case of 
uniform wall flux boundary, by Yousef & Tarasuk (1981) for the case of uniform wall 
temperature boundary and by Osborne & Incropera (1985) for the case of asymmetric 
heating. Early work revealed that the pressure-driven axial flow was superimposed 
with a secondary, buoyancy-driven flow consisting of two counter-rotating vortices. 
The first evidence of a transition to a four-cell secondary flow pattern was contained 
in the numerical work of Patankar, Ramadhyani & Sparrow (1978) for a circular 
tube with non-uniform peripheral heating. Chou & Hwang (1984) found a similar 
behaviour for a rectangular duct with uniform peripheral heating. Patankar et al. 
(1978) also showed that in the fully developed region, the flow and heat transfer 
characteristics depend only on a single dynamical parameter, viz. a modified Grashof 
number, and not separately on Reynolds and Rayleigh numbers. The continued 
interest in the problem is quite evident from the recent work of Van Dyke (1990), 
who extended the Stokes series solution of Morton (1959) to 31 terms with the aid of 
a computer. He examined the two-dimensional flows only in a circular cross-section 
and the multiplicity aspects were not investigated. Multiplicity features of such flows 
were first observed in our earlier works (Nandakumar, Masliyah & Law 1985; Fung, 
Nandakumar & Masliyah 1977). The complete bifurcation structure of the two- 
dimensional flows was revealed in a recent work by Nandakumar & Weinitschke 
(1991, hereinafter referred to as I). 

The equations governing the laminar mixed-convection flow problem are similar 
to those of laminar flow in coiled ducts (the Dean problem). The flow features of 
the Dean problem in the fully developed domain have been examined by Dennis 
& Ng (1982) and Nandakumar & Masliyah (1982) for curved ducts of circular 
cross-section. Of particular interest are the recent theoretical work of Winters (1987) 
and experimental work of Bara, Nandakumar & Masliyah (1992) for a curved, 
rectangular geometry. Winters (1987) has presented a complete bifurcation picture 
of two-dimensional solutions. Bara et al. (1992) have experimentally verified the 
dual solutions and investigated the three-dimensional flow development leading to 
a fully developed state. One of the main results of these studies is that the four- 
cell, two-dimensional solution is unstable to asymmetric perturbations and that over 
a narrow window of Dean number, no stable two-dimensional solutions exist. A 
natural consequence is that the stability is transferred to a solution branch with 
a more complicated flow structure. Likely possibilities are those that break the 
translational symmetry giving rise to streamwise-periodic modes or travelling wave 
solutions. Purely time-periodic, two-dimensional motions that arise through a Hopf 
bifurcation are unlikely to be realized in any experiment as there is a predominant 
flow direction and hence any perturbation at a streamwise location will not only grow 
temporally but will also be convected downstream, i.e. we have a convective instability 
(Monkewitz 1990) as opposed to absolute instability. Ravi Sankar et al. (1988), in fact 
found that when a two-dimensional, four-cell flow is perturbed at a spatial location, 
the perturbation grows spatially in the downstream direction destroying the two- 
dimensional solution and replacing it with a streamwise-periodic, three-dimensional 
solution. In the present work we examine the occurrence of a similar phenomenon in 
laminar mixed-convection flow through horizontal straight ducts. 

Entrance region (three-dimensional) mixed-convection flows have also been studied 
quite extensively. Briley (1971) considered an axially uniform flux condition in 
a square geometry and used this problem as a test of his proposed numerical 
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method, but did not present an extensive parametric study. The numerical method 
that he developed was based on the parabolized form of the equations of motion. 
Hieber & Sreenivasan (1974) considered a circular pipe with axially uniform wall 
temperature and a large-Prandtl-number fluid. Hishida, Nagano & Montesclaros 
(1982) re-examined that problem numerically after relaxing the large-Prandtl-number 
assumption and retaining the elliptic formulation. Their grid resolution is, however, 
quite coarse with only 26 point in the streamwise direction. Use of an iterative 
successive relaxation scheme also restricts the range of Grashof numbers over which 
reliable, converged results could be obtained. No attempt is made to compare the 
results of their elliptic formulation to those based on parabolized formulation. 

Note that for the axially uniform wall temperature condition, as the fluid warms up 
to the wall temperature, the buoyancy effect decreases asymptotically with increasing 
axial position. As pointed out by Hieber & Sreenivasan (1974), the forced convection 
becomes the dominant mechanism far downstream of the tube and hence the final 
asymptotic development of the temperature field corresponds to that of the Graetz 
problem. The case of constant flux in the axial direction provides a sustained forcing 
along the entire length of the tube, thus making it similar to the Dean problem in a 
continuously coiled duct where a sustained centrifugal force is present along the length 
of the flow. For rectangular ducts the case of an axially and peripherally uniform flux 
condition has been considered by Abou-Ellail & Morcos (1983) while the bottom- 
heated case has been studied by Incropera & Schutt (1985) and Mahaney, Incropera 
& Ramadhyani (1987) using the parabolized form of the equations. Mahaney et al. 
(1987) suggest that for the specific boundary conditions studied by them no stationary 
two-dimensional flows may exist. 

Yao (1978) has presented the most lucid outline of the physics of the flow in the 
entrance region of heated, circular pipes. He has shown the entry flow to depend on 
the following parameters: (a) Reynolds number, Re = (v,)a/v, (b) Grashof number, 
Gr = pga4q,/kv2, (c) Prandtl number, Pr = V / I C ,  and (d) the ratio c = Gr/Re2.5 where 
(v,) is the average inlet velocity, a the pipe radius, v the kinematic viscosity, p the 
coefficient of expansion, g the acceleration due to gravity, qw the constant axial heat 
flux at the wall, k the thermal conductivity and IC the thermal diffusivity. Depending 
on the relative magnitude of the parameters, the interaction between the inviscid 
core, the axial boundary layer and the secondary boundary layer can take place 
over different length-scales. Yao (1978) identifies four such cases. The perturbation 
expansion solution developed by Yao (1978) is valid, however, only over a distance 
of O(a) as the nonlinear interaction further downstream is highly complicated and is 
intractable by analytical means. 

In a fully elliptic formulation the second-order diffusive terms in the predominant 
flow direction z are retained. Hence, a far downstream boundary condition is required 
to be specified. Typically this is specified as the fully developed state, i.e. gradients of 
velocities in the axial direction vanish. This of course restricts the possible solutions 
to those that evolve to a fully developed state. As pointed out earlier, streamwise- 
periodic, three-dimensional stationary solutions are known in the Dean problem. 
They have been computed in finite geometry by Ravi Sankar et al. (1988) and for 
infinite geometry by Finlay, Keller & Ferziger (1988). Because of the close analogy 
between the two problems we expect similar behaviour in the present problem. 

A parabolized formulation entails neglecting the axial momentum diffusion in com- 
parison to axial convection and is akin to the standard boundary-layer approximation. 
In flow situations where there is a predominant flow direction and no abrupt change 
in curvature of the geometry, this formulation has proven to be useful in predicting 
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FIGURE 1. Geometry, coordinate system and grid layout 

the flow development without excessive computing requirements. Bara et al. (1992) 
have validated the parabolized formulation for the Dean problem by comparing ex- 
perimentally measured velocity profiles in the entrance region with those predicted 
by the parabolized model. Since the present geometry does not have any curvature 
on the streamwise direction, there is no possibility of streamwise flow reversals and 
hence the parabolized formulation should be equally valid for the Morton problem. 
We will show that it accurately tracks the flow and temperature development in the 
entrance region by comparing with literature values for the case of forced convection 
for which such results are available. In cases where it evolves into a fully devel- 
oped state, the results once again agree with previously established values. For the 
streamwise-periodic flows grid sensitivity tests will indicate that such a phenomenon 
is not a numerical artifact. Another advantage of the parabolized formulation is 
that the wavelength in the streamwise direction is selected naturally by the marching 
scheme during the course of the flow evolution in the streamwise spatial direction. 
The wavelength so selected is insensitive to grid refinement, particularly the marching 
step size, In a fully elliptic formulation, however, a wavelength (or the length of 
the computational box in the streamwise direction) must be specified a priori and 
periodicity conditions must be imposed on the inflow and outflow boundaries. 

2. Governing equations 
The equations of motion, in the Cartesian coordinate system (figure l), are parab- 

olized by neglecting the axial (z-direction) momentum diffusion and the axial con- 
duction and assuming that the variation of axial pressure gradient at a cross-plane is 
small while considering the axial momentum equation. The latter condition implies 
decomposing the pressure as p’(x, y, z )  = p’,(z) + p’(x, y). The equations are rendered 
dimensionless using the following scales : 

x = x’/De’, u = u’/(v/De’) ,  p = p’/(pv2/De’’),  T = (T’-TT,‘)/(Q’De’/kP’), 
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where the prime denotes a dimensional quantity, x = (x, y,z) and u = (v,,v,,v,) are 
the position and velocity vectors respectively, De’ is the equivalent diameter, p’ is the 
pressure, T,‘ is the inlet temperature, Q is the heat transfer rate per unit length in the 
axial z’ direction, k is the thermal conductivity of the fluid and P’ is the perimeter of 
the duct. The non-dimensionalized forms of the equations are: 

Continuity equation 
dux 80, av, 
ax ay az -+ -+-=o ,  

x-momentum equation 

y-momentum equation 

aP 
a Y  

[U . V]U, = -- + Av, + 2 Gr T, 

z-momentum equation 

Energy equation 

Global continuity constraint 
Pr[u . V]T = AT, 

/ vzdx dy = A Re, 

Global energy balance 

where 

f g d i .  = P ,  

RePr dTb 
4 dz - 1, 

sP(Q/P’)De’4 Gr = kv2 , 

and P r  = [C ,p /k ] ,  Re = [De‘(v:)/v]. A(=l )  and P(=4) are the cross-sectional area 
and perimeter of the duct and have the numerical values shown in parenthesis. The 
left-hand side of (2.7) represents the heat flux integrated around the periphery, 5 .  The 
bulk temperature, Tb, in (2.8) is defined as the mixing cup temperature by 

/vz T dx dy 

v, dx dy 
T b =  s 

Note that the Reynolds number (forced flow parameter) appears explicitly only in 
(2.6) and (2.8) and a further transformation Z* = z/Re, vf = v,/Re, pk = pm/Re2 
leaves (2.1)-(2.5) unchanged and removes Re from (2.6) and (2.8). Thus the role of 
Re is merely to stretch the development length in the z direction. This was also 
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FIGURE 2. Peripherally averaged Nusselt number variation along the duct length for the limiting 
case of Gr = 0. Grid sensitivity test shows good agreement over the development length. 

observed empirically by Mahaney et al. (1987). This observation is valid only in 
the context of a parabolized formulation and is an artifact to that extent. In an 
experimental realization of this problem, the duct geometry must necessarily be of 
finite axial length. Very near the inlet and exit the axial diffusion terms (the elliptic 
effect) will be important over a dimensionless axial distance O(l/Re2) (Hishida et al. 
1982). It should be noted that in closed flow systems such as the convection box 
(Rayleigh-B6nard problem) or Taylor-Couette flow it is well known (Benjamin & 
Mullin 1982; Daniels 1981) that the end effects are felt through out the flow domain. 
In contrast, in open channel flows with a predominant flow direction, the effect of at 
least the downstream end condition could be confined to a small distance near the 
exit. The inlet condition of course will be convected into the observational domain 
and it becomes important to have a good control over the inlet conditions in an 
experiment. The side conditions (in the x- and y-directions) will, of course, be felt 
throughout the flow domain even in open channel flows. The boundary conditions 
for the velocities are: (i) no-slip condition on the duct wall (v, = uy = vz = 0) and (ii) 
uniform or fully developed square duct profile for u, at the inlet. 

Axially uniform flux and peripherally uniform temperature are imposed on the 
energy equation together with uniform inlet temperature (T = 0). The reflective 
symmetry about x = 0 that is inherent in (2.1)-(2.5) is normally (Mahaney et al. 
1987; Hishida et al. 1982) imposed to reduce the computational domain by half. This, 
however, restricts the possible solutions to symmetric ones. Our experience with the 
Dean problem (Sankar, Nandakumar & Masliyah 1988) indicates that this symmetry 
is broken when streamwise-periodic modes develop. Hence imposing this symmetry 
will not allow streamwise-periodic flows to develop which is perhaps the reason that 
such solutions have not been reported in previous studies. In the present work, the 
equations are solved over the full cross-section. Macroscopic quantities of interest are 
computed as follows : 

where f is the Fanning friction factor and Nu, is the peripherally averaged Nusselt 
number at an axial position. 
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FIGURE 3. 
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Bifurcation diagram of two-dimensional flows from I. In the window of Grashof 
between L2 and L3 there are no unconditionally stable two-dimensional flows. 

3. Numerical method 
The governing equations were discretized by integrating them over a control volume. 

The resulting equations were solved using the SIMPLE algorithm as outlined by 
Patankar (1980). The mean pressure gradient, dp,/dz, was determined by the secant 
method by satisfying the global continuity constraint (2.6). The wall temperature, T,, 
was also determined by the secant method by satisfying the energy constraint (2.7). 
Equation (2.8) is used as further check on the energy balance at each axial position. In 
the limit of pure forced convection (Gr = 0) and fully developed flow, the URe,Nu) 
values changed from (14.117, 3.625) to (14.173, 3.618) as the grid was refined from 
21 x 21 to 31 x 31 and both the results agree within 1% of published values of (14.227, 
3.608) (Shah & London 1978). Excellent agreement in the developing region is also 
established by comparing the present Nul values with those of Wibulswas (1966) and 
Chandrupatla & Sastri (1977) as shown in figure 2 for two different grid sizes and 
Prandtl numbers. Additional evidence that the parabolized formulation can track the 
flow and temperature field development is to be found in Neti & Eichhorn (1983). 
They compare the numerical results with experimental data for the case of combined 
hydrodynamic and thermal development in a square duct using a numerical scheme 
very similar to the present one. They found a grid of 11 x 11 over one-quarter of the 
duct cross-section to be adequate and this agrees with our earlier observation that a 
grid of 21 x 21 over the full cross-section is adequate. Most of the simulations were 
done with an axial step size of Az  = 0.0005. Grid sensitivity studies were conducted 
for several values of Gr to ensure that the phenomena are not spurious artifacts of 
poorly resolved grids. 

4. Results and discussion 
Part of the bifurcation diagram for P r  = 0.73 and a square cross-section is 

reproduced from I in figure 3 for Grashof numbers in the range of lo5 < Gr < lo6. The 
first limit point below which there is a unique two-dimensional solution occurs at L1 
where Gr = 139 81 1. The primary branch which has a two-cell flow structure remains 
unconditionally stable until the limit point L2 at Gr = 216571. An asymmetric 
solution branch originates at a symmetry breaking point near L2 and this branch 
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FIGURE 4. (a) Development of axial velocity, u,, along the line of symmetry at various axial positions 
shows the evolution to a two-cell fully developed state for Gr = 25000, P r  = 0.73. (b) Vertical 
velocity at various axial positions shows the formation of boundary layers near the vertical walls 
and an inviscid core in the centre during early stages of secondary flow development. 

is unstable. Between L2 and L3, the only symmetric solution that has been found 
has a four-cell flow structure and this solution branch is unstable to asymmetric 
perturbations. In what follows we present the results of a series of three-dimensional 
simulations at the Grashof numbers identified in figure 3. In each case the flow 
development is studied either from an initially parabolic (one-dimensional) inlet 
condition or from a fully developed, two-dimensional state subject to a specified inlet 
perturbation. 

It is well known that in the fully developed region the secondary flow generated 
by the buoyancy force shifts the location of the maximum axial velocity away from 
the centre and in the direction in which the secondary flow is pointed, which is 
downwards in the present case. The evolution of the streamwise velocity component 
from an initially parabolic profile to a fully developed state is shown in figure 4(a) 
for Gr = 25000 and P r  = 0.73. At these parameter values there is a unique, 
two-dimensional solution with a two-cell pattern. The vertical velocity component 
is shown along (x,y = 0) at various axial positions in figure 4(b).  At short axial 
distances, the heating from the lateral boundaries results in a boundary-layer type 
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of upward flow near the vertical walls and this is accompanied by a bulk inviscid 
downward movement of the fluid near the centre. Such a model with an inviscid core 
and a secondary flow boundary layer has indeed been used in a number of earlier 
studies to develop approximate solutions to this class of problems - see for example 
Mori & Nakayama (1967). The viscous effects eventually penetrate to the centre of 
the duct. Note that throughout the development length, the expected symmetries 
about the vertical line ( x  = 0, y) are preserved. 

A fully developed state is reached at a dimensionless distance of z+ < 0.2 as 
seen in figure 5, where (a) the peripherally averaged Nusselt number, Nu@), (b) 
the vertical velocity component u,(O, -0.368, z+) and (c) the axial pressure gradient, 
dp,/dz are shown as a function of the axial position. The vertical velocity component 
at (0, -0.368, z+) is a sensitive indicator of any flow pattern changes. In the present 
case it is negative and reaches an invariant state, indicating that the flow has reached 
a fully developed two-cell state. A contour plot of the streamlines is shown in figure 
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FIGURE 6. At Gr = 175000, which lies between L1 and L2 in figure 3, the fully developed two-cell 
flow remains stable. Hence the inlet flow should develop into that invariant state. (a-c) shows such 
a development from a one-dimensional inlet flow. In (d-J the fully developed flow generated in 
(a-C) is perturbed at Z+ = 0.1; but the perturbation dies and the two-dimensional, two-cell flow is 
restored. 

5(d) .  These are computed from the defining equations, v, = ay /ay  and vy = -dy/ax 
which are of course valid only in the fully developed domain. The fully developed 
flow agrees well with our earlier two-dimensional computation in I. 

A similar development pattern is seen in figure 6(a-c) for Gr = 175000. Note 
that this value of the Grashof number is still below L2 and hence there is an 
unconditionally stable, two-dimensional solution with a two-cell flow pattern. Hence 
a one-dimensional inlet velocity profile with a uniform temperature field evolves 
through a complex three-dimensional development region and reaches an invariant 
two-dimensional state at an axial position of about Z+ NN 0.15. 

Once such a two-dimensional flow has evolved, its stability can be probed by 
physically perturbing the flow by inserting a small needle at an appropriate axial 
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location. In experiments such tricks have been used (Masliyah 1980; Bara et al. 
1992) to induce the development of four-cell flows. The objective, of course, is to 
provide a sufficiently large-amplitude perturbation to excite even those modes that 
have a small growth rate so that their effect can be realized over shorter duct lengths. 
We consider two such perturbations: (i) a symmetric one, in which the velocity 
components along ( x  = 0,-0.5 < y 5 0) at a specified axial position are set to 
zero and (ii) an asymmetric perturbation, in which the velocity components along 
(x = -0.158,-0.5 < y < 0) are set to zero. These simulate insertion of a needle 
near the inlet, through the bottom wall of the duct either along the line of symmetry 
or away from the line of symmetry on one side only. The connection between this 
type of numerical experiment and the stability results of I are admittedly tenuous for 
the following reasons. The stability conclusions in I were based on a linear stability 
analysis of two-dimensional flows to two-dimensional perturbations only, while the 
proposed numerical experiment introduces a finite-amplitude perturbation and is 
inherently three-dimensional in nature. Nevertheless it provides useful information 
under at least two circumstances, viz. (i) when there is a stable two-dimensional 
solution on the primary branch, such a solution is restored even when it is subject 
to a finite-amplitude and possibly three-dimensional perturbation and (ii) in regions 
(such as between L2 and L3) where there are no stable two-dimensional solutions, the 
evolution of three-dimensional flows can be studied since the full nonlinear equations 
are subject to that perturbed flow field. 

The two-dimensional solution shown in figure 6(a-c) was perturbed asymmetrically 
and the results shown in figure 6 ( d , e )  indicate that the effect of such a perturbation 
decays rapidly and the symmetric, two-dimensional solution with a two-cell flow is 
restored for Gr = 175000. Similar tests at higher values of Gr show the flow to 
become convectively unstable and evolve in the downstream direction into completely 
new solutions. 

The next simulation is for Gr = 250000 which is just past the limit point L2 and 
lies in the range of Gr where there are no stable two-dimensional solutions. Results 
of flow development from a one-dimensional inlet velocity field and a uniform 
temperature field are shown in figures 7-10. With such an inlet profile the initial 
stages (0 < z+ < 0.1) of the flow field development at any Gr follow essentially 
the same trend, viz. secondary flow (vy)  boundary layers develop near the vertical 
walls with the attendant inviscid downward displacement of fluid in the core as seen 
in figure 7(b). The streamwise velocity profile undergoes the characteristic shift in 
the direction of the body force which is left in figure 7(a). During this stage a 
strong secondary flow with two large cells are established and the flow field remains 
symmetric about the vertical centreline. 

If such a flow is stable at that chosen Gr then it would reach an invariant state as 
found in the previous two cases. In the present case, however, there is no symmetric 
two-dimensional solution with a two-cell pattern. Hence the flow continues to develop 
over the range 0.1 < z+ < 0.2. Since there is a two-dimensional, four-cell flow at 
Gr = 250000 as seen in figure 3, the flow continues to evolve towards that state. 
During this stage also the flow field remains symmetric as seen in figure 7(b). Also, the 
secondary flow reversal near the centre of the duct indicates that a four-cell pattern 
is emerging. This switch from a two-cell to a four-cell pattern occurs over a short 
axial distance of 0.15 < z+ < 0.2. Figure 8 shows that such a four-cell flow retains 
its form including the symmetry over considerable axial length (0.2 < z+ < 0.5). But 
the stability results of I indicate that such a four-cell flow should be unstable to any 
asymmetric perturbations. This has some important implications for the observability 
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FIGURE 7. (a) Development of axial velocity, uz, along the line of symmetry at various axial positions 
shows the evolution to a four-cell two-dimensional state over z+ < 0.4 for Gr = 250000, P r  = 0.73. 
(b) Vertical velocity at various axial positions shows the formation of boundary layers near the 
vertical walls and a flow reversal in the core due to the formation of additional cells. 

of such four-cell flows in experiments in spite of their predicted instability. The 
unstable asymmetric mode in such four-cell flows must have very slow growth rates 
for the four-cell flows to remain observable over long lengths of duct. The scenario 
outlined above has been verified experimentally by Bara et al. (1992) for the Dean 
problem which shares several common features with the Morton problem. 

It should be pointed out that in the previous simulations no perturbations were 
imposed at the inlet and the computations were carried out in double precision. 
Thus any natural, random perturbations in the computations due to round off errors 
were kept to a minimum. Nevertheless, continuing the simulation over even larger 
lengths confirms that the four-cell flow is indeed unstable and a streamwise-periodic 
three-dimensional flow develops spontaneously beginning at Z+ > 0.5 as seen in figure 
8. The projections of the velocity vector in the (x, z)-plane at various y locations are 
shown in figure 9. Similar projections in the (x, y)-plane are shown in figure 10 at 
various axial locations over one period. It is clear from these figures that most of 
the dynamic changes in the flow field occur in the lower half of the duct where the 
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temperature field is unstably stratified. Also the symmetry about the vertical centreline 
is destroyed and the secondary flow undergoes a sustained oscillation between a two- 
cell and a four-cell state. The additional two cells that are continuously formed and 
destroyed near the bottom of the duct roll over to one side (the left side in figure 10 
and the upper side in figure 94. 

This new solution raises some interesting questions. The solution over one wave- 
length in the streamwise direction can be regarded as a solution that broke the 
continuous translational symmetry ( i.e. two-dimensionality) in the z-direction into a 
discrete one while concurrently breaking the reflective symmetry about the vertical 
centreline (x = 0, y). The period of course has been selected naturally during the flow 
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FIGURE 9. Projection of the velocity vectors in the (x, z)-plane elucidates the nature of the 
three-dimensional flow. The flow development remains symmetric until z+ = 0.5. The symmetry is 
broken for z+ > 0.5 and the flow oscillates between a two-cell and a four-cell structure with the 
destruction of the additional cells taking place in the positive x direction. 

evolution. To establish that this is indeed a true three-dimensional, periodic solution 
to the problem and not a numerical artifact we must establish that (i) it does not in 
any way depend on the initial state from which it evolved and (ii) that it is insensitive 
to grid refinement tests. Breaking of the reflective symmetry about (x = 0,y) also 
implies that this is an asymmetric, three-dimensional solution. Since the equations 
posses reflective symmetry, such asymmetric solutions must occur in pairs. Evidence 
in support of this is presented in figure 11 (a-e) from two additional simulations at the 
same Gr = 250000. Starting with the same one-dimensional inlet profile as before, 
but using a grid of (31 x 31) in the cross-plane and 62 = 0.0005 (which is a five-fold 
decrease in the axial step size) the flow evolves through the same stages as seen 
in figure l l(a,b).  The wavelength changes from 0.243 to 0.251 which is about 3%, 
thus establishing grid insensitivity. Interestingly we have obtained the mirror image 
solution as seen in the vector plot of velocity projection in the (x, 2)-plane in figure 
ll(c) and this choice in the flow evolution occurred spontaneously. This indicates that 
a three-dimensional solution branch must bifurcate from a two-dimensional branch 
through a pitch-fork bifurcation. The exact location of such symmetry-breaking 
points is beyond the scope of the present study. 

In a variation of this simulation at the same Gr = 250000 and with the same 
inlet profiles, the flow was perturbed asymmetrically at an axial location of Z+ = 0.1. 
Results are shown in figure l l (d ,e ) .  Since this is a large-amplitude perturbation, it 
compensates for the slow growth rate of the four-cell mode and triggers the periodic 
mode almost immediately. The waveform and the period are not affected by the 
perturbation, indicating that these periodic solutions are independent of the initial 
state from which the flow evolves. 

Results of additional tests, shown in figure 12, confirm the dual nature of the three- 
dimensional, asymmetric solutions. In this simulation a periodic state is established 
first in which the additional cells move downward in the (x, 2)-projection (figure 
124 or right in the (x, y)-projection (figure 12b). Then the complete flow field 
corresponding to the state shown in figure 12(b) was flipped around the vertical 
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0.8151 

FIGURE 10. Projection of the velocity vectors in the ( x ,  y)-plane is shown at various z+ locations 
over one period in the streamwise direction. The formation and destruction of additional cells and 
the breaking of the reflective symmetry about the x = 0 axis are revealed clearly. 

centreline (x = 0,y) in accordance with the symmetry conditions as shown in figure 
12(d) and it was used as the starting profile of the next simulation. The (x, z ) -  
projection of the velocity field shown in figure 12v) clearly confirms that the mirror 
image solution has been obtained. The horizontal velocity components v, shown in 
figure 12(a, e) appear to be different because they were sampled at a point away from 
the line of symmetry, viz. (0.069, -0.3793). 

Figure 13 shows, for Gr = 400000, P r  = 0.73, the flow development along the 
axial direction starting with a one-dimensional inlet profile. This point still lies in the 
window between L2 and L3 where there are no stable, two-dimensional solutions. The 
secondary flow development goes through the same phases as before, but with much 
more rapidity - the spontaneous switch to a periodic mode occurs around Z+ = 0.35 
and the period has also decreased significantly to 0.146. 

The next simulation is at Gr = 500000 which lies between L3 and L4. From 
figure 3 it can be seen that there are five two-dimensional solutions at this value 
of Gr, but none are stable. The results of the developing flow simulation starting 
from a one-dimensional inlet flow are shown in figure 14. The early stages of flow 
development are exactly the same as before, viz. two large cells form first followed 
by additional cells near the lower-centre part of the duct and the flow retains the 
symmetry until the axial distance of about Z+ = 0.35. This symmetry is spontaneously 

23 FLM 255 



698 S. Ravi Sankar. P. A. J .  Mees and K .  Nandakumi 

I 
0.2 0.4 0.6 0.8 1 .o 1.2 

Axial distance, z+ = z/(Re Pr) 

: 31 x 31 0.0005 0.2514 - 
8 

7 

6 

I 
0.55 

h 
.% 8 
8 
$ 4  

3 

- 
-.1 

.* 3 0  
U 

> - A  

I 

Axial distance, z+ = z/(Re Pr) 1.09 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Axial distance, Z+ = z/(Re Pr) 

FIGURE 11. Grid sensitivity of streamwise periodic flows. (a, b) The same waveform and period are 
obtained upon refining the grid from 21 x 21 to 31 x 31 and 6 z  from 0.0025 to 0.0005. (c) The 
velocity vector projection on the (x, z)-plane reveals the mirror image solution of the earlier one 
presented in figure 9. (d ,  e) A perturbation at Z+ = 0.1 simulating a needle insertion has no effect 
on the nature of the streamwise periodic flows. 

broken further downstream and interestingly the additional cells are periodically 
destroyed and reformed on either side of the line of symmetry as seen in figure 
14(e). Unlike the previous cases, the three-dimensional periodic solution obtained 
is a symmetric one. Note that quantities like peripherally averaged Nusselt number 
(figure 14a) or local values of velocity sampled on the line of symmetry (figure 14d) 
show half the period indicated in figure 14(b), while local quantities sampled away 
from the line of symmetry (figure 14b,c) show the true period to be 0.212. In a fully 
elliptic formulation, of course, one can take half the wavelength to be the length 
of the computational box in the streamwise direction and impose shift-and-reflect 
symmetry to generate solutions of this type directly. It should be pointed out that 
the results shown in figure 14 were obtained on a grid of 21 x 21 x 0.0025. As in 
all the previous cases, grid sensitivity was checked by repeating the simulation on a 
finer grid of 31 x 31 x 0.0005. Starting with an one-dimensional inlet profile, however, 
resulted in a periodic solution of the asymmetric type described earlier at other values 



$ 8  

Three-dimensional mixed-convection flows 

(b) 

699 

I I 
0 0.2 0.4 0.6 0.8 1 .o 

Axial distance, z+ = z/(Re Pr) 

Flipped profile 
used as inlet 

3 
rd 
$2 
U 

% .*- 
........ 

................. ;.. ................ : ................... i .................... j .................. 

0 0.2 0.4 0.6 0.8 1 .o 
Axial distance, z+ = z/(Re Pr) 

FIGURE 12. Dual, three-dimensional solutions at Gr = 250000, P r  = 0.73. (a) ~~(0 .069,  -0.3793), (b) 
velocity vector projected on (x, y)-plane at Z+ = 0.935, (c) velocity vector projected on (x, z)-plane 
at y = -0.4138. (d)  the profile shown in (b) is flipped and used as the inlet profile to obtain the 
mirror image solution. (e) uX(0.069,-0.3793) corresponds to the mirror image solution of (a); v) 
velocity vector projected on (x, z)-plane at y = -0.4138 corresponds to the mirror image solution 
of (c). 

of Gr. This raises some doubt about the validity of the symmetric, three-dimensional 
solution and warrants further investigation. 

Some possible explanations are as follows: (i) both the symmetric and asymmetric 
type of three-dimensional flows might co-exist at Gr = 500000 and the region of 
attraction of each solution will then determine which one is realized in any physical 
or numerical experiment; (ii) there might be a singular point (either a limit point 
or a symmetry-breaking bifurcation point) of the three-dimensional solutions in this 
neighbourhood of Gr. Its location itself will be sensitive to changes in grid resolution 
and it might move past Gr = 500000 as the grid is refined from 21 x 21 to 31 x 31. 

In an effort to shed additional light on this, several simulations were carried out. 
Keeping the cross-plane grid resolution the same at 21 x 21, the streamwise grid was 
refined from 6z = 0.0025 to 6z = 0.0005. This five-fold change in grid size did not 
change the flow structure. A three-dimensional, symmetric solution was reproduced 
and the period changed slightly from 0.212 to 0.208. Hence only the cross-plane 
resolution appears to have a crucial effect. The profile on the exit cross-plane that 
corresponds to the symmetric, three-dimensional solution was interpolated from a 
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FIGURE 13. At Gr = 400000, which lies between L2 and L3 in figure 3, there are no stable 
two-dimensional solutions. (a) Peripherally averaged Nusselt number variation with z+, (b)  vertical 
velocity u,(O, -0.3793) variation with z+, (c) axial pressure gradient variation with Z+ and (d) velocity 
vector projected on (x, z)-plane at y = -0.4138. Since the two-dimensional, four-cell flow is unstable 
to asymmetric perturbations, the flow eventually develops a three-dimensional, streamwise-periodic 
structure. The period decreases with increasing Gr.  

21 x 21 grid to finer grids of up to 31 x 31 in an effort to remain within the region 
of attraction of the three-dimensional, symmetric solution. The flow pattern retained 
its symmetry on grids of up to 27 x 27, but switched to the asymmetric mode upon 
further grid refinement. Results of the symmetric solution on the 27 x 27 grid are 
shown in figure 15. This leads us to believe that the second conjecture above is 
the likely cause of this phenomenon. This cannot, however, be verified without a 
comprehensive bifurcation study of the three-dimensional flows. 

Results of a final simulation at a heating rate corresponding to Gr = 700000 are 
shown in figure 16. This point lies above L5 in figure 3 and parts of this two-cell 
branch were found to be stable in I. It was shown in I that as the aspect ratio 
of the duct was increased, the limit points L2 and L4 approach each other and 
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FIGURE 14. At Gr = 500000, which lies between L3 and L4 in figure 3, there are up to five 
two-dimensional solutions, but none are stable. (a) Peripherally averaged Nusselt number variation 
with z+, (b) horizontal velocity ~~(0.105, -0.316) variation with z+, (c) axial velocity ~~(0.105, -0.316) 
variation with z+, ( d )  vertical velocity ~ ~ ( 0 ,  -0.316) variation with z+ and (e) velocity vector projected 
on (x, z)-plane at y = -0.368. The flow eventually develops a three-dimensional, streamwise-periodic 
structure, with the additional cells alternating on either side of the line of symmetry. 

around an aspect ratio of 1.405, the two-cell branches merge through a transcritical 
bifurcation point. Hence we expect the same stability attribute on both parts of the 
two-cell branch. As a strong test of this expectation, the non-symmetric solution 
found at the exit for Gr = 500000 was used as the inlet condition for the simulation 
at Gr = 700000. Figure 16 clearly shows that a two-dimensional state is established 
within a short distance of z+ = 0.2. Furthermore the reflective symmetry is restored 
even though the inlet profile was asymmetric. A similar simulation was carried out 
at Gr = 900000 with a similar result. 

The results presented for Gr of up to 900000 are completely consistent with the 
known results from our earlier two-dimensional study and reveal several new features 
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FIGURE 15. The profile from the exit state in figure 14 has been interpolated to a finer grid of 
27 x 27 and used as the inlet profile. (a) Peripherally averaged Nusselt number variation with z+, (b) 
horizontal velocity ~~(0.080, -0.360) variation with z+,  (c) axial velocity ~~(0.080, -0.360) variation 
with z+, (d)  vertical velocity uy(0,-0.360) variation with Z+ and (e) velocity vector projected on 
(x, 2)-plane at y = -0.400. 

of three-dimensional flows. We conclude with a few speculative thoughts as to how 
the flow might evolve at even higher values of Gr. Continuing with the same grid 
resolution and increasing the value of Gr we observed a spatially evolving chaotic flow 
with no discernible structure. Stability determination in I showed that at Gr = 3 x lo6 
the two-cell branch was unstable. But no additional two-dimensional, stationary 
bifurcating solutions were found on this branch. It is likely that there are some Hopf 
bifurcation points on the two-cell branch at these high Grashof numbers, as some 
complex pairs of eigenvalues were computed in I. Although these might be valid 
singular points of the two-dimensional equations of motion, the two-dimensional, 
time-periodic flows that evolve at these locations are not physically realizable. We 
expect solutions that evolve both in space (in the streamwise direction) and in time. 
Travelling wave solutions are possible candidates. We believe that it is not fruitful 
to go beyond a Grashof number of over a million, without increasing the spatial 
resolution and more importantly including the time-varying formulation to capture 
any travelling wave phenomena. Hence any future work on the Morton problem 
should focus on constructing the complete bifurcation diagram of three-dimensional, 
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FIGURE 16. At Gr = 700000 there is a stable two-dimensional solution with a two-cell flow 
structure. Hence starting with even a nonsymmetric, three-dimensional profile that was obtained on 
a 31 x 31 x 0.0005 grid for Gr = 500000 as the inlet profile and increasing Gr to 700000 results in 
the quick destruction of the non-symmetric flow. A two-dimensional flow with a two-cell profile is 
re-established. Note that the reflective symmetry is also restored. 

stationary flows and on simulating both the spatial and temporal evolution of flows 
at higher heating rates. 

The effect of Prandtl number on the flow development was also investigated in the 
present study. Values of P r  = 0.73 and 6.5 correspond very nearly to that of air and 
water respectively. As shown in I, the bifurcation structure of the two-dimensional 
flows was unchanged over this range of P r ;  but the singular points occurred at 
lower values of Gr as the Prandtl number was increased. The development of three- 
dimensional flows at P r  = 6.5 followed essentially the same pattern as for P r  = 0.73. 
Hence these results are not presented in detail. 

5.  Conclusions 
A parabolized form of the equations of motion and energy has been shown to 

track the flow development in the entrance region quite accurately. For the case of 
axially uniform heat flux, which provides a sustained forcing, the flow development 
pattern follows closely that in the Dean problem. At low values of Gr, where a unique 
two-cell state exists in the fully developed region, any type of inlet perturbation 
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decays rapidly. Over an intermediate range of Gr, where multiple two-dimensional 
states were shown to exist in I, a one-dimensional flow at the inlet evolves through 
a complex transition zone into a streamwise-periodic, three-dimensional flow. In the 
transition zone, a two-cell structure forms first followed by the development of two 
additional cells. They remain symmetric and almost invariant over sufficiently long 
lengths of the duct. Such flows are, however, unstable and hence they eventually 
develop asymmetries and evolve into the streamwise-periodic flows. Some of these 
three-dimensional solutions do not conform to the symmetry properties expected of 
the equations; hence they occur in multiplicities of two. The streamwise wavelength, 
selected naturally by the marching scheme, is insensitive to grid refinement. The 
wavelength decreases with increasing Grashof number. Results obtained from the 
parabolized three-dimensional equations are completely consistent with the known 
stability and multiplicity results of two-dimensional flows. 

It is believed that the two-dimensional four-cell flows are experimentally observable 
mainly because the growth rate of the asymmetric modes in the axial direction are 
small at lower values of Gr. At a higher Gr any type of inlet perturbation decays 
and a two-cell state is recovered downstream. In spite of the parabolization, the 
three-dimensional simulations are still CPU intensive and hence no attempt has been 
made to bracket the critical values of the parameters at which three-dimensional flows 
bifurcate from two-dimensional ones. At Grashof numbers larger than the values 
covered here, we expect the time-dependent behaviour to become important. We have 
focused here only on stationary solutions. 
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